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1 Infinite Extensions and Galois Cohomology

1.1 Hilbert’s Theorem 90

Let’s introduce the notation Lang uses for his version of Hilbert’s theorem 90. Let G be a
group and A be an abelian group with G � A.

Definition 1.1. A 1-cocycle of G in A is a family of elements {ασ}σ∈G such that

αστ = ασ + σατ .

Definition 1.2. A 1-coboundary of G in A is a family of elements {ασ}σ∈G such that there
exists a fixed β ∈ A such that ασ = σβ − β for all σ ∈ G.

Theorem 1.1 (Hilbert’s Theorem 90). Let L/K be Galois with Galois group G. Then
H1(G,L∗) = 1.

Proof. A 1-cocycle gives a twisted action G � L given by σ 7→ aσσ. So (aσσ)(aττ) = aστστ
by the 1-cocycle condition. We want to find b with aσσb = b for all σ; b is fixed by the
twisted action and b 6= 0.

Find a fixed vector under G as
∑

σ∈G σv, which is always fixed by G. A fixed vector
under the twisted action is given by b =

∑
σ∈G aσ · σv. We want to find v so b is nonzero.

This is possible by Artin’s theorem on the independence of σ, since otherwise, we could
find a nonero linear relation between these homomorphisms equal to 0.

Suppose G is cyclic, and let N(a) = 1 and a = b/σb, where σ generates G. What
is a 1-cocycle? Put a1 = 1, aσ = a, aσ2 = aσσaσ = aσa, and in general, aσn =
aσ(a)σ2(a) · · ·σn−1(a) = a1 = 1. So N(a) = 1 for this to give a 1 cocycle.

So since N(0) = 1, we get a 1-cocycle as above. Note that a = b/σb iff there is a cocycle
given by aσi = b/σib for all i, so a 1-cocycle is a 1-coboundary.

Theorem 1.2 (Hilbert’s theorem 90). H1(G,L) = 0, where L is considered as an additive
group.
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Proof. As a module over K[H], L is isomorphic to K[G], so it is a free module. L has a
basis of the form {σw : σ ∈ G} for some fixed w; this is a result called the normal basis
theorem.1 This shows that H i(G,L) = 0 for i > 0.

Does H i(G,L∗) = 1 for i > 0? No. H2(G,L∗) is often nonzero. This is related to the
Brauer group. H1(G,L∗) is related to the Picard group. The Picard group of integers of a
number field is a class group.

Why is Lang’s definition of H1 as cocycles/coboundaries (aστ = aσ + σ(aτ )) the same
as Borcherd’s definition Ext1

Z[G](Z,M)? Here is a sketch of a proof that they are the same.

To find Ext(A,B), Take the free resolution of A. So we want a free resolution of Q by
free Z-modules.

Z[G]⊗ Z[G]⊗ Z[G]→ Z[G]⊗ Z[G]→ Z[G]→ 0

These have respective Z-bases

g0 ⊗ g1 ⊗ g2, g0 ⊗ g1, g0, 1

And we can map the basis elements by a map d, which sends a component to the identity.
G acts by acting on each component. You should check that d2 = 0 and that if da = 0,
then a = db for some b.

Now form the exact sequence

← Hom(F0, B)← Hom(F1, B)← Hom(F0, B)

where Fi is the free resolution.
Check that d(aσ) = 0 iff the aσ are a 1-cocycle (exercise). Then {aσ} = d(∗) iff the aσs

are a 1-coboundary.

1.2 Infinite Galois extensions

We want to look at extensions that are algebraic, normal, and separable.

Example 1.1. Take Q̄/Q, where Q̄ is the algebraic closure.

Suppose L/K is an infinite Galois extension. What does the Galois group look like?
Any automorphism of L gives automorphisms of all finite extensions Li/K. An element
of Aut(L/K) is a set of elements of Aut(Li/K) that are compatible. So Gal(L/K) is the
inverse limit of the groups Gal(Li/K).

1Professor Borcherds never remembers the proof, so see Lang.
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Example 1.2. Let K = Fp, and let L = F̄p. L =
⋃
p≥1 Fpk . We have the following picture:

Fp4 Fp6 Fp9

Fp2 Fp3

Fp

So the groups will look like this:

Z/4Z Z/6Z Z/9Z

Z/2Z Z/3Z

Z/Z

So Gal(F̄ /F ) = lim←−n(Z/nZ). This is called the profinite completion of Z.

Definition 1.3. A profinite group is an inverse limit of finite groups

Definition 1.4. The profinite completion of G is

lim←−
Gi normal
G/Gi finite

G/Gi.

This is a subset of
∏
G/Gi, with the discrete topology. There is a universal map from

G to a profinite group. The image of G is dense in the Krull topology2, so lim←−G/Gi is a
sort of completion of G.

Example 1.3. Recall that Z/nZ ∼=
∏

Z/pni
i Z, where n =

∏
pkii (by the Chinese remainder

theorem). Then lim←−Z/nZ =
∏

lim←−ki Z/p
ki
i Z =

∏
p Zp, the p-adic integers.

2Professor Borcherds expressed his displeasure with the fact that there is a Marvel villain named Krull.
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For finite extensions, we get a 1 to 1 correspondence between extensions of K in L and
subgroups of Gal(L/K). Is the same true for infinite extensions? No. Suppose α ∈ L.
Look at K(α)/L. The set of things in the Galois group fixing α is closed in the Krull
topology; this is the set of things fixing α in M/K, where M is the normal closure of α. A
subgroup fixing any element α ∈ L is always closed in the Krull topology. So a subgroup
fixing all elements of an extension M is an intersection of closed subgroups and is hence
closed.

Instead, we get a 1 to 1 correspondence between extensions of K in L and closed
subgroups of Gal(L/K). We leave this as an exercise. The proof relies on the theorem for
finite Galois extensions and some bookkeeping.

Example 1.4. LetK = Q, and let L be the cyclotomic extension of Q (Q(all roots of unity).
L =

⋃
Q(ζn), where ζn is a primitive n-th root of unity. we get the picture

Q(ζ9) Q(ζ6) Q(ζ4)

Q(ζ3) Q(ζ2)

Q

We know that GalQ[ζn]/Q = (Z/nZ)∗. So Gal(Qcycl/Q) is given by the inverse limit of

(Z/9Z)∗ (Z/6Z)∗ (Z/4Z)∗

(Z/3Z)∗ (Z/2Z)∗

(Z/Z)∗

As before, (Z/nZ)∗ =
∏

(Z/pkii Z)∗. So lim←−(Z/nZ)∗ =
∏
p(Z/p

ki
i Z)∗ =

∏
p Z∗p. This is equal

to Z̄∗, where Z̄ is the profinite completion of the ring Z . Nicely enough, it is abelian.

Example 1.5. Let K = Q and L = Q̄, the algebraic closure of Q. Let G = Gal(Q̄/Q). G
is not known. The abelianization of G is known. This is lim(Z/nZ)∗ = Gal(Qcycl/Q). We
have the exact sequence

0→ Gal(Q̄/Qcycl)→ Gal(Q̄/Q)→ Gal(Qcycl/Q)→ 0.
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What is Gal(Q̄/Qcycl)? This is unknown. There is a conjecture of Shafarevich that this is
isomorphic to the profinite completion of a countable free group. Gal(Q̄/Q) is related to the
Langlands program and “automorphic forms.”3 Part of Andrew Wiles’ proof of Fermat’s
last theorem is about understanding some of the structure of Gal(Q̄/Q).

1.3 Abelian Kummer theory

We want to find abelian extensions of K, given that K has enough roots of unity. Let K̄
be the separable algebraic closure of K, the largest separable extension in the algebraic
closure. Look at

1→ µn → K̄∗ → K̄∗ → 1,

where µn is the n-th roots of unity in K. This is an exact sequence of groups acted on by
Gal(K̄/K). Take the invariants under Gal(K̄/K).

1→ µn → K∗
x 7→xn−−−−→ K∗ → H1(G,µn)→ H1(G, K̄∗)︸ ︷︷ ︸

=1

→ H1(G, K̄)︸ ︷︷ ︸
=1

→ · · · .

where these last two are 1 by Hilbert’s theorem 90. The definition of the first homomology
is the same as for when G is finite, except cocycles must be continuous.

So we get

k∗
x 7→xn−−−−→ K∗ → Hom(G,µn)→ 1,

and Hom(G,µn) = H∗/(K∗)n, which is cyclic of order n. The kernels of homomorphisms
in this group are isomorphic to subgroups H of G with G/H cyclic and of order dividing
n. This is isomorphic to extensions L of K with Gal(L/K) cyclic and of order n. This is
the same as our previous description: cyclic extensions of the form K( n

√
∗).

1.4 Artin-Schrier extensions

Let L/K be cyclic of order p, where p is the characteristic of K. Then L = K(α), where α
is a root of xp− x− b = 0 for b ∈ K. Rewrite this in terms of infinite extenions and Galois
cohomology. Let K̄ be the separable closure of K. Use

0→ Fp → K̄
x 7→xp−x−−−−−→ K̄ → 0,

the exact sequence of modules acted on by Gal(K̄/K). Take the invariants

0→ Fp → K
x 7→xp−x−−−−−→ K → H1(G,Fp︸ ︷︷ ︸

=Hom(G,Fp)

→ H1(G, K̄)︸ ︷︷ ︸
=0

→ H1(G, K̄)︸ ︷︷ ︸
=0

→ · · · .

3Professor Borcherds says that to understand what automorphic forms are, it takes a semester, and to
understand what “related to” means, it takes a lifetime of study.
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H i(G, K̄) = 0 for i > 0 by the normal basis theorem.
So Hom(G,Fp) = K/ im(xp−x) correspond to normal subgroups of index p in Gal(K̄/K).

which correspond to cyclic extensions of degree p.
What about extensions L/K with group Z/pnZ and n > 1? The answer is to use Witt

vectors; see the exercises in Lang. We get

0→ Z/pnZ→W →W → 0,

where W is the ring of Witt vectors.
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