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1 Infinite Extensions and Galois Cohomology

1.1 Hilbert’s Theorem 90

Let’s introduce the notation Lang uses for his version of Hilbert’s theorem 90. Let G be a
group and A be an abelian group with G O A.

Definition 1.1. A I-cocycle of G in A is a family of elements {ac},c such that
Ogr = Qg + OQr.

Definition 1.2. A I-coboundary of G in A is a family of elements {ay } . such that there
exists a fixed 8 € A such that a, = o — 8 for all o € G.

Theorem 1.1 (Hilbert’s Theorem 90). Let L/K be Galois with Galois group G. Then
HYG,L*) = 1.

Proof. A 1-cocycle gives a twisted action G O L given by 0 — a,0. So (a,0)(a,;7T) = agroT
by the 1-cocycle condition. We want to find b with a,0b = b for all o; b is fixed by the
twisted action and b # 0.

Find a fixed vector under G as ) .. ov, which is always fixed by G. A fixed vector
under the twisted action is given by b=} __~a, - ov. We want to find v so b is nonzero.
This is possible by Artin’s theorem on the independence of o, since otherwise, we could
find a nonero linear relation between these homomorphisms equal to 0. 0

Suppose G is cyclic, and let N(a) = 1 and a = b/ob, where o generates G. What
is a l-cocycle? Put a1 = 1, ap = a, a,2 = a,0a, = aca, and in general, a,n =
ao(a)o?(a) - 0" 1(a) =a; = 1. So N(a) = 1 for this to give a 1 cocycle.

So since N(0) = 1, we get a 1-cocycle as above. Note that a = b/ob iff there is a cocycle
given by a,: = b/c’b for all i, so a 1-cocycle is a 1-coboundary.

Theorem 1.2 (Hilbert’s theorem 90). H'(G, L) = 0, where L is considered as an additive
group.



Proof. As a module over K[H], L is isomorphic to K[G], so it is a free module. L has a
basis of the form {ow : o € G} for some fixed w; this is a result called the normal basis
theorem.! This shows that H(G, L) = 0 for i > 0. O

Does H'(G,L*) = 1 for i > 0? No. H%(G, L*) is often nonzero. This is related to the
Brauer group. H'(G, L*) is related to the Picard group. The Picard group of integers of a
number field is a class group.

Why is Lang’s definition of H! as cocycles/coboundaries (a,, = a, + o(a,)) the same
as Borcherd’s definition Ext%[G} (Z, M)? Here is a sketch of a proof that they are the same.

To find Ext(A, B), Take the free resolution of A. So we want a free resolution of Q by

free Z-modules.
Z|G] ® Z|G) ® Z|G] — Z|G) ® Z|G] — Z|G] — 0

These have respective Z-bases

Jo g1 ®g2, Go®g1, go, 1

And we can map the basis elements by a map d, which sends a component to the identity.
G acts by acting on each component. You should check that d?> = 0 and that if da = 0,
then a = db for some b.

Now form the exact sequence

< Hom(Fy, B) - Hom(F}, B) + Hom(Fp, B)

where Fj is the free resolution.
Check that d(ay) = 0 iff the a, are a 1-cocycle (exercise). Then {a,} = d(x) iff the a,s
are a l-coboundary.

1.2 Infinite Galois extensions
We want to look at extensions that are algebraic, normal, and separable.
Example 1.1. Take Q/Q, where Q is the algebraic closure.

Suppose L/K is an infinite Galois extension. What does the Galois group look like?
Any automorphism of L gives automorphisms of all finite extensions L;/K. An element
of Aut(L/K) is a set of elements of Aut(L;/K) that are compatible. So Gal(L/K) is the
inverse limit of the groups Gal(L;/K).

!Professor Borcherds never remembers the proof, so see Lang.



Example 1.2. Let K = F),, and let L = F’p. L= U/le F,r. We have the following picture:

| | |
p NS p NS p
NS

So the groups will look like this:

So Gal(F/F) = l&ln(Z/nZ) This is called the profinite completion of Z.
Definition 1.3. A profinite group is an inverse limit of finite groups

Definition 1.4. The profinite completion of G is

lim  G/G;.
G; normal
G/G,; finite

This is a subset of [[ G/G;, with the discrete topology. There is a universal map from
G to a profinite group. The image of G is dense in the Krull topology?, so @G/Gi is a
sort of completion of G.

Example 1.3. Recall that Z/nZ = [[ Z/p;"Z, where n = || pfi (by the Chinese remainder
theorem). Then @Z/nZ = Hl&lkl Z/pfiZ = [1,Zp, the p-adic integers.

2Professor Borcherds expressed his displeasure with the fact that there is a Marvel villain named Krull.



For finite extensions, we get a 1 to 1 correspondence between extensions of K in L and
subgroups of Gal(L/K). Is the same true for infinite extensions? No. Suppose o € L.
Look at K(a)/L. The set of things in the Galois group fixing « is closed in the Krull
topology; this is the set of things fixing « in M /K, where M is the normal closure of a. A
subgroup fixing any element « € L is always closed in the Krull topology. So a subgroup
fixing all elements of an extension M is an intersection of closed subgroups and is hence
closed.

Instead, we get a 1 to 1 correspondence between extensions of K in L and closed
subgroups of Gal(L/K). We leave this as an exercise. The proof relies on the theorem for
finite Galois extensions and some bookkeeping.

Example 1.4. Let K = Q, and let L be the cyclotomic extension of Q (Q(all roots of unity).
L =JQ(¢y), where ¢, is a primitive n-th root of unity. we get the picture

[ T [

Q(¢o) Q(¢4)

\ 7

(¢2)
We know that Gal Q[(,]/Q = (Z/nZ)*. So Gal(Qgyc/Q) is given by the inverse limit of

| | |

(Z/9Z)* (Z/6Z)* (Z/AZ)*

(2/37.)* (Z)27Z)*
(Z)7)*
As before, (Z/nZ)* = [1(Z/p¥Z)*. So L(Z/nZ) =1, (Z/pFz)s = [1,Z,. This is equal
to Z*, where Z is the profinite completion of the ring Z . Nicely enough, 1t is abelian.

Example 1.5. Let K = Q and L = Q, the algebraic closure of Q. Let G = Gal(Q/Q). G
is not known. The abelianization of G is known. This is lim(Z/nZ)* = Gal(Qcya/Q). We
have the exact sequence

0— Gal(@/@cycl) - Gal(@/@) - Gal(@cycl/@) —0
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What is Gal(Q/Qcye1)? This is unknown. There is a conjecture of Shafarevich that this is
isomorphic to the profinite completion of a countable free group. Gal(Q/Q) is related to the
Langlands program and “automorphic forms.”? Part of Andrew Wiles’ proof of Fermat’s
last theorem is about understanding some of the structure of Gal(Q/Q).

1.3 Abelian Kummer theory

We want to find abelian extensions of K, given that K has enough roots of unity. Let K
be the separable algebraic closure of K, the largest separable extension in the algebraic
closure. Look at

1 — pp — K" — K* =1,

where p, is the n-th roots of unity in K. This is an exact sequence of groups acted on by
Gal(K/K). Take the invariants under Gal(K /K).

1= p — K* 225 K HY(G, p) — HYG,K*) — HY(G,K) — -+~

/

=1 =1

where these last two are 1 by Hilbert’s theorem 90. The definition of the first homomology
is the same as for when G is finite, except cocycles must be continuous.

So we get
T

k* —— K* — Hom(G, ) — 1,

and Hom(G, puy,) = H*/(K*)™, which is cyclic of order n. The kernels of homomorphisms
in this group are isomorphic to subgroups H of G with G/H cyclic and of order dividing
n. This is isomorphic to extensions L of K with Gal(L/K) cyclic and of order n. This is
the same as our previous description: cyclic extensions of the form K (/).

1.4 Artin-Schrier extensions

Let L/K be cyclic of order p, where p is the characteristic of K. Then L = K(«), where «
is a root of ¥ —2 —b =0 for b € K. Rewrite this in terms of infinite extenions and Galois
cohomology. Let K be the separable closure of K. Use

P —

0 F—K>~5K-=0,
the exact sequence of modules acted on by Gal(K /K). Take the invariants
0> F, - K 2" g HY(G,F, - H(G,K) » H(G,K) — --- .

N— ~ ~
=Hom(G,F}) =0 =0

3Professor Borcherds says that to understand what automorphic forms are, it takes a semester, and to
understand what “related to” means, it takes a lifetime of study.



H(G,K) =0 for i > 0 by the normal basis theorem.

So Hom(G, F,) = K/ im (2P —x) correspond to normal subgroups of index p in Gal(K /K).
which correspond to cyclic extensions of degree p.

What about extensions L/K with group Z/p"Z and n > 1?7 The answer is to use Witt
vectors; see the exercises in Lang. We get

0—=>2Z/p"Z —-W — W — 0,

where W is the ring of Witt vectors.
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